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AbstractDenoising is a crucial step in the processing of seismic 
data. The exceptional performance of deep-learning-based seismic 
data denoising has drawn notice recently. We examine the deep 
Convolutional Networks (ConvNets) architecture for seismic data 
denoising in this letter. A generative network with Gaussian noise 
is applied to a single seismic data profile using the untrained 
ConvNets. Generative networks with varied handmade designs, 
starting with random initialized parameters, differ in their 
capacity to map the seismic data at iterations and separate the 
Gaussian noise as residuals. The depth, width, and skip 
connection—the three primary building blocks of a generative 
network—are created as different architectures to fit noisy, 
clean, and Gaussian noise seismic data, respectively, in order to 
investigate the capacity of Gaussian noise separation. Then, as a 
previous model to the seismic data denoising task, the 
advantageous network architecture with high and low impedance 
(a capability to impede data reconstruction) to noise and seismic 
data is used. In addition, a stopping criterion is created for the 
data fitting procedure in order to automatically extract the latent 
clean seismic data. The suggested approach uses network 
architecture as before and does not require data sets for training. 
The efficiency of the chosen ConvNet is demonstrated by 
extensive experiments on both synthetic and field data, and the 
benefits are assessed by contrasting the denoising outcomes with 
f-x multi-channel singular spectrum analysis (MSSA) and the 
most advanced unsupervised neural network (NN)-based 
technique.. 

Index Terms— Generative network, network architecture prior, 
seismic data denoising, unsupervised learning. 

 

I. INTRODUCTION 

EISMIC data denoising is a classical yet still active topic, 
since the presence of noise will affect subsequent imaging, 
inversion, interpretation, and other operations [1]–[3]. The 
seismic data noise is divided into coherent and incoherent 

noise [4], [5]. For the purpose of this letter, the removal of 
incoherent noise is considered. 

The existing traditional methods for seismic data denoising 
can be mainly classified into three categories. The first cate- 
gory generally builds a predictive filter for seismic data denois- 
ing, such as f-x deconvolution [6], nonstationary predictive 

filtering [7], and t-x predictive filtering [8]. Considering that the 
seismic data and noise can be distinguishable in some sparse 
transform domains, the second category including Fourier 
transform method [9], wavelet transform [10], [11], 

curvelet transform [12], dreamlet transform [13], [14], and dic- 
tionary learning-based sparse transform [15], [16] are used to 
enhance the sparsity and then attenuate seismic noise [17]. The 
third category based on rank reduction has developed rapidly 
in recent years. It uses the low-rank characteristic of seismic 
data to remove noise during the rank reduction process, such 
as multi-channel singular spectrum analysis (MSSA) [18] and 
Cadzow filtering [19]. Besides the mentioned methods, some 
hybrid methods are also designed to fulfill the seismic data 
denoising task [5], [20], [21]. 

With the success of deep learning in solving computer vision 
problems, its popularity in seismic data denoising field spread 
rapidly. The deep learning methods for seismic data denoising 
can be divided into the supervised methods [22]–[25] and 
unsupervised methods [26]. The supervised methods usually 
aim to obtain a nonlinear mapping from noisy seismic data to 
clean seismic data by high-quality training set and handcrafted 
regularizer. However, the difficulty of acquiring a large number 
of label data sets hinders its application to field data. In con- 
trast, the unsupervised methods only use the raw seismic data 
and can also attenuate the random noise effectively. Due to the 
promising effects and convenience, the unsupervised methods 
have been studied intensively recently. 

In the field of image processing, Ulyanov et al. [27] pro- 
posed an unsupervised method called deep image prior (DIP) 
and designed a general network framework (Fig. 1) for image 
processing tasks such as super-resolution, inpainting, and 
denoising. The main components of the framework include 

the number of filters at depth i for up-sampling (nu[i ]), down-

sampling (nd [i ]), and skip connections (ns[i ]). This 
unsupervised method uses the deep Convolutional Networks 
(ConvNets) as generative networks to obtain the target image 
during iterations starting from a single degraded image. They 
also show that the network architecture serving as prior affects 
the result of image processing. Wavefield or seismic data are 
special data set. They are band-limited and the time–space 
distribution must observe causality which is dictated by wave 
equations [28]. It decides that the suitable network architecture 
for unsupervised seismic data processing is different from 
image processing. Inspired by the outstanding performance 
of DIP achieved in image processing, Liu et al. [29] have 
designed a special network architecture (deep seismic prior) 
to seismic missing trace interpolation. 

In this letter, we explore the ability of generative network 
architectures to   separate seismic data and random noise. 
In addition to the network depth and width, we also test 
the impedance to noise and seismic data with or without 
skip connection. In this way, a generative network architec- 
ture beneficial to attenuate Gaussian noise in seismic data 
is determined and served as prior model for seismic dat
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Fig. 1.   Illustration of the general DIP architecture for image process- 

ing [27] and for image   denoising,   nd [i]   =   nu [i]= 128;ns [i]= 4, and 

kd [i] = ku [i]= 3;ks [i] = 1 correspond to the respective kernel sizes. 

denoising. Meanwhile, we design a stopping criterion for the 
fitting process to obtain the latent clean seismic data. We apply 
the favorable generative network to both noisy synthetic and 
field data sets to demonstrate the denoising performance. 

 

II. PRIOR MODEL FOR  SEISMIC DATA DENOISING 

A. Objective Function 

For seismic data denoising, we need to recover clean seismic 
data x from the contaminated observation y 

y = x + n (1) 

where n denotes the random noise. To recover the clean 
data, conventional deep learning methods use the optimization 
function which is defined as 

minx E( f (y), x)+ R(x) (2) 

where f denotes the nonlinear mapping of ConvNet and R(x) 
stands for the regularizer. In addition to the network architec- 
ture, the regularizer based on the prior of the target data or 
noise also plays an essential role, that is, the performance 
relies not only on the network architecture but also on the 
handcrafted regularizer. Here, the explicit regularizer can be 
dropped and substituted by the implicit prior of data captured 

by the network parameters [27], as follows: 

θ ∗ = arg min E( f (Z), y) (3) 

where Z and θ denote the randomly initialized input and 
network parameter, respectively. Equation (3) indicates that we 
can only use the contaminated observation y to obtain a local 

minimizer θ ∗ and the optimization problem can be effectively 
solved by the existing optimizer such as Adam. 

 

B. Favorable Network Architecture for Seismic Data 

Denoising 

Benefiting from the high and low impedance to random 
noise and image,   respectively, the   architecture displayed 
in Fig. 1 has good performance on image processing tasks. Due 
to the difference between seismic data and image, the network 
architecture must be adjusted to seismic data processing. 
We divide the network frame (Fig. 1) into three parts: the 
depth [l (the total numbers of down-sampling or up-sampling 

layer), the width nd [i ], nu [i ] (the numbers of filter at depth 

i for down-sampling and up-sampling, where 0 < i       l), 
and the skip connection structure. As shown in the rest of 

Fig. 2. Illustration of the selected ConvNet architecture for seismic random 
noise attenuation. 

 

 
Fig. 3. Noise impedance of various generative networks. (a) nd   = 
nu = [128, 128, 128, 128, 128]. (b) nd = nu = [128, 128, 128, 128]. (c) nd = 
nu = [64, 64, 64, 64, 64].  (d)  nd =  nu = [64, 64, 64, 64]. (e)  nd = 
nu = [8, 16, 32, 64, 128].   (f)   nd = nu = [8, 16, 32, 64].   (g)   nd = 

nu = [8, 16, 32]. 

this section, ConvNet with nd nu [8, 16, 32, 64, 128] and 
without skip connection can be a good candidate prior model 
for seismic data denoising. The detailed network architecture 
is shown in Fig. 2. It possesses sufficient quality to remove 
random noise from seismic data effectively. To prove it, 
Gaussian noise, clean, and noisy seismic data are reconstructed 
by various generative networks to show the advantages of 
selected generative network architecture. Here, we use the 

 
the impedance of various generative network architectures for 
different data. 

The high impedance to noise is the most important premise 
for generative network to noise attenuation. In the following, 
we first test the impedance of various generative networks 

to Gaussian noise with μ  0 and σ 2
   1. Fig. 3 shows 

the learning curves from networks with different depths and 
widths. The red and blue lines are with skip connection and 
without skip connection, respectively. First, the blue lines 
are always above the red lines, which means the generative 
network has high noise impedance without the skip connec- 
tion. The skip connection has an important role in recovering 
the full spatial features of data [30]. However, the network 
with skip connection in this experiment tends to recover the 
unstructured features of input Z , so that the random noise 
is reconstructed earlier, which sharply reduces the impedance 
to noise. Second, comparing the trend of blue lines in the 
first and second rows in Fig. 3, the fixed width networks 
(first row) fit the Gaussian noise better in latter iterations, 

learning curve (mean square error (MSE) loss) to evaluate 
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Fig. 4. Data sets for generative networks impedance test. (a) Clean field 
seismic data obtained by the traditional random noise removal method. 
(b) Synthetic seismic data. (c) Same data as (a) plus additive Gaussian noise 

with μ = 0 and σ 2 = 1. (d) Same data as (b) plus additive Gaussian noise 

with μ = 0 and σ 2 = 1. 
 

Fig. 5.   Learning curve of various generative networks for the test data 
in Fig. 4. (a) Clean field data [Fig. 4(a)]. (b) Clean synthetic data [Fig. 4(b)]. 
(c) Noisy field data [Fig. 4(c)]. (d) Noisy synthetic data [Fig. 4(d)]. 

 
which means the network with varying width regarding to 
depth (second row) have high impedance to the Gaussian 
noise. Third, the networks in Fig. 3(a),(c), (e), Fig. 3(b), (d), 
(f), and Fig. 3(g) are with depth 5, 4, and 3, respectively. 
Comparing the blue learning curve between groups, we can 
conclude that the deeper the network, the higher the impedance 
to noise. Therefore, for high impedance to Gaussian noise, 
the selected ConvNet [Fig. 3(e)] with deep depth, varying 
width, and without skip connections is preferred. 

Then, both clean and noisy seismic data are used to verify 
whether the above networks without skip connection could 
extract the seismic signal in noisy data. Both the clean field 
[Fig. 4(a)] and synthetic [Fig. 4(b)] seismic data sets and 

also with added Gaussian noise with μ 0 and σ 2 1 
[Fig. 4(c) and (d)] are used for testing. Fig. 5(a)–(d) shows the 
corresponding learning curve to the data set in Fig. 4(a)–(d), 
respectively. The lines of different colors are from networks 
with different depths and widths. First, comparing the learning 
curves in Figs. 3 and 5(a) and (b), in general, all networks fit 

the seismic data at early iterations (approach to 0 after 10
3), 

which means the networks have low impedance to seismic 
data. Second, networks with depth from 5 to 3 have decreasing 
impedance to seismic data. Take also into consideration the 
learning curve in Fig. 3(b), (d), (f), and (g); the learning 
curves from the corresponding networks for the noisy seismic 
data [Fig. 5(c) and (d)] arrive at a too low value of MSE to 
effectively remove the noise. 

 

 

Fig. 6. Analysis of learning curve from the selected ConvNet for random 
noise. (a) Learning curve (MSE). (b) Difference curve. (c) Variance curve. 

 

The purple lines (selected ConvNet) not only decrease 
early but also reach higher value of MSE in latter iterations 
than other lines in Fig. 5(c) and (d). Combining with the 
result of Fig. 3, the sufficient condition that includes high 
and low impedance to noise and seismic data, respectively, 
ensures the selected ConvNet can extract feature of seismic 
data and attenuate the random noise effectively. Meanwhile, 
both synthetic and field data are fitted well by the selected 
ConvNet, which means the corresponding network can be 
adopted to not only synthetic but also field data denoising task. 
Due to the computational cost which will increase sharply 
as the network goes deeper and wider [31], this generative 
network architecture is used for seismic data denoising without 
proceeding to deeper depth. 

 
C. Stopping Criterion and Workflow of Seismic Data 

Denoising 

For the generative networks, they reconstruct the input data 
(including the valid signal and noise) if the fitting process 
runs long enough [27]. To obtain the latent denoising result 
automatically, we design a heuristic algorithm with stopping 
criterion for iterations. We first use the difference operation 
to eliminate the linear trend of the learning curve [Fig. 6(a)] 
for random noise. Then, by sliding a window with length 100 
on the difference curve, the variance curve can be calculated. 
In Fig. 6(c), after 10

3
 iterations, the difference curve [Fig. 6(b)] 

starts to fluctuate significantly and its variance [Fig. 6(c)] 
increases sharply. Hence, the optimization function in the 
proposed heuristic algorithm is defined as 

arg mint>103 Var100(Diff (loss(t))) (4) 

where t denotes the epoch of iterations; loss(t) denotes the 
value of MSE at tth epoch; Diff denotes the differential 
operation; Var denotes the variance operation in the sliding 
window. 

After setting a tolerance (default:1000) to determine the 
local minimizer of variance curve, the stopping criterion can 
find a suitable t to stop iterations and the latent clean seismic 
data are then obtained. The proposed seismic data random 
noise attenuation workflow is shown in Algorithm 1. 

 

III. EXPERIMENTAL   RESULTS 

In this section, we apply the selected ConvNet (Fig. 2) to 
the synthetic and field seismic data for denoising. The selected 
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Algorithm 1 Workflow of Seismic Random Noise Attenuation 

With the Selected ConvNet 
Input: Noisy seismic data y; Maximum number of iterations 

N 1000   learning rate lr 0.01 Uniform distribution 

Parameters a 0, b 0.1. 

1: Normalize y to the range 0 1 
2: Initialization: Network parameter θ(0) input z 

U (a,b) n 0 
3: While n < N do 

loss
(i) = E

 
f (i ) (z), y

 
; 

θ 
 (i   1) (i) ∂loss(i) 

∂θ (i) 

if the stopping criterion is met: 

θ ∗ θ(n−1000) 

break; 

end if 

n n 1 

end while 

Output: Clean seismic data x = f θ∗ (z).  

 

Fig. 7. Denoising results for synthetic data set. (a) Noisy synthetic seismic 
data (0 dB). (b) f-x MSSA (25.07 dB). (c) Zhang et al. [26] (26.74 dB). 
(d) Selected ConvNet (31.27 dB). The figures below (f)–(h) are the corre- 
sponding residuals. The ground truth is listed in (e) for comparison. 

 

 
ConvNet is compared with f-x MSSA and Zhang et al. [26] 
to demonstrate the advantages. 

 
A. Synthetic Data Set 

The SNR is used to measure the synthetic data denoising 

performance, which is defined as follows: 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. (a) Noisy field seismic data. The denoising results by (b) f-x MSSA, 
(d) Zhang et al. [26] and (f) Selected ConvNet. Figures in (c), (e), and (g) 
are the corresponding residuals for (b), (d), and (f). 

 

 
listed in Fig. 7(e) for comparison. As it can be seen clearly 
in Fig. 7, the selected ConvNet can extract and reconstruct the 
reflections of seismic signal effectively. Meanwhile, benefiting 
from the high impedance to noise, there is no significant 
residual noise in the denoising result of the selected ConvNet 
like other methods. 

 
B. Field Data Set 

The field data in Fig. 8(a) contain 992 traces, each with 128 
time-samples and 2-ms time interval. The second column in 
Fig. 8 shows the denoising results by f-x MSSA [Fig. 8(b)], 
Zhang et al. [26] [Fig. 8(d)], and the selected ConvNet 
[Fig. 8(f)], respectively, and the corresponding residuals are 
shown in the third column. In the corresponding residuals 
shown in Fig. 8(b), (d), and (f), we can hardly find obvious 
seismic reflection events except the residual of f-x MSSA, 
which indicates that the signals are not seriously damaged 
during the denoising process of Zhang et al. [26] and the 
selected ConvNet. Also, it can be seen that although the 

SNR = 10 log10 

2 
F 

||X − X ∗||2
 

(5) 
selected ConvNet and Zhang et al. [26] have good performance 
on this data set, the residual of the selected ConvNet indicates 
that the selected ConvNet can remove more noise than Zhang 

where X denotes the clean signals; X ∗ denotes the recon- et al. [26] while preserving valid signals. 

structed data; || ||2 denotes the F norm. 
The synthetic seismic data in Fig. 7 contain 96 traces, 

each with 500 time-samples and 2-ms time interval. Fig. 7(a) 
shows the noisy data which added Gaussian white noise 

with μ  0 and σ 2
    1. The value of SNR in noisy data 

is 0 dB. Fig. 7(b)–(d) shows the denoising result by f-x 
MSSA (25.07 dB), Zhang et al. [26] (26.74 dB), and the 
selected ConvNet (31.27 dB), respectively. The corresponding 
residuals are shown in Fig. 7(f)–(h) and the ground truth is 

C. Discussion 

Compared with the denoising performance of the above 
methods in both the synthetic and field data, it can be seen 
that the selected ConvNet can remove the random noise well 
from not only synthetic but also field data. Different from f-x 
MSSA based on rank reduction and Zhang et al. [26] which 
is a patch-neural network (NN)-based method, it possesses 
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TABLE I 

COMPARISON  OF  SEISMIC  DATA  DENOISING  METHODS 

 

 

extensive adaptability to seismic data and can better capture 
the global feature of seismic signal. We list some operation 
requirements (data preprocessing, parameters selection, result 
reprocessing, and the time cost using single GTX1060 GPU 
on the synthetic experiment) in Table I for further comparison. 
f-x MSSA and Zhang et al. [26] need to select parameters 
while denoising different seismic data; Zhang et al. [26] also 
need to process data with patch sampling and recombination. 
However, the selected ConvNet can be used to denoise the 
seismic data directly without any pre and postoperations except 
normalization. Though the cost time for single data set usually 
needs several minutes, the convenient operation of the selected 
ConvNet still makes it good option in practice. 

 
IV. CONCLUSION 

This letter presents an unsupervised seismic random noise 
attenuation method based on ConvNet denoising. When fitting 
noisy seismic data, the generative network may distinguish 
random noise during iterations by utilizing the high and low 
impedance of the network to noise and seismic data. In order 
to automatically extract the latent clean seismic data, a 
stopping criterion is also established, and the advantageous 
generative network architecture that served as the previous 
model for seismic data denoising is investigated.. Examples 
using both synthetic and field data show how effective it is. In 
order to obtain the desired outcome, the suggested method 
typically requires a significant number of iterations—many 
thousands—and is consequently computationally demanding. 
Because of its straightforward operation and unsupervised 
nature, it can be used to create label data for conventional 
approaches. 
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